Foundations of Machine Learning Al2000 and Al5000

FoML-37 Model Combination

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- Intro to ML and Probability refresher
- MLE, MAP, and fully Bayesian treatment
- Supervised learning
 - a. Linear Regression with basis functions
 - b. Bias-Variance Decomposition
 - c. Decision Theory three broad classification strategies
 - d. Neural Networks
- Unsupervised learning
 - a. K-Means, Hierarchical, and GMM for clustering
- Kernelizing linear Models
 - a. Dual representation, Kernel trick, SVM (max-margin classifier)
- Tree-based Methods

భారతీయ సాంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్

For today

Model combination

Single vs Multiple models

• Combining multiple models (often) → improved performance

Single vs Multiple models

- Combining multiple models (often) → improved performance
 - E.g., train L different models and use the average of the predictions made by each model

Single vs Multiple models

- Combining multiple models (often) → improved performance
 - E.g., train L different models and use the average of the predictions made by each model
- Such combinations of models → Committees

Model combination - variants

- Training multiple models in sequence
- Error function used to train a models depends on the performance of the previous model

Model combination - variants

- Select one of the models to make the prediction
 - Choice of the model is a function of the input
 - o Different models are responsible for making predictions in different regions

Model combination - variants

- Select one of the models to make the prediction
 - Choice of the model is a function of the input
 - o Different models are responsible for making predictions in different regions
- E.g., decision trees
 - Selection process is a sequence of binary selections

Bayesian Model Averaging vs. Model combination

Model combination

- E.g., density estimation using a mixture of Gaussians (GMM)
- Several Gaussian components are combined probabilistically
 - o Binary latent variable z is responsible for generating x

Model combination

$$p(\mathbf{x}, \mathbf{z})$$

$$p(\mathbf{x}) = \sum p(\mathbf{x}, \mathbf{z}).$$

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$p(\mathbf{X}) = \prod_{n=1}^{N} p(\mathbf{x}_n) = \prod_{n=1}^{N} \left[\sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n) \right].$$

Each data sample has a corresponding latent variable

Bayesian Model Averaging

- Several different models indexed by h and prior ρ(h)
 - E.g., GMM or mixture of Cauchy distributions

Bayesian Model Averaging

- Several different models indexed by h and prior ρ(h)
 - E.g., GMM or mixture of Cauchy distributions

Marginal distribution over data

$$p(\mathbf{X}) = \sum_{h=1}^{n} p(\mathbf{X}|h)p(h).$$

Bayesian Model Averaging

- Several different models indexed by h and prior ρ(h)
 - o E.g., GMM or mixture of Cauchy distributions

Marginal distribution over data

$$p(\mathbf{X}) = \sum_{h=1}^{H} p(\mathbf{X}|h)p(h).$$

One model is responsible for generating the whole data, p(h) captures our uncertainty as to which model that is

Decision Trees

- Suffer from high variance
 - Different splits of training data → quite different results
- Random Forests, and Boosting reduce the variance
 - These are general purpose procedures

Bootstrap

- Creates multiple datasets sampled with replacement
- Used to quantify the uncertainty associated with a given estimator



Bootstrap

- Averaging a set of observations reduces the variance
- Take many training sets, train separate models and average the resulting predictions

• Compute B different models using B separate training sets

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

- Useful for decision trees (improves predictions)
- B trees are trained on the bootstrapped datasets
 - Trees are grown deep without pruning
 - High variance and low bias
 - \circ Aggregating \rightarrow low variance

- Prediction aggregation
 - Average for regression
 - Majority voting for classification

- Improvement over bagged trees
 - Via decorrelating them

- Similar to bagging, we build several trees
- When building trees
 - o During a split, a random subset of predictors are chosen as candidates
 - o Instead of all the ' ρ ' predictors, only a random sample of 'm' ($\sim \sqrt{\rho}$) are allowed to conduct split

- Suppose one strong predictor and multiple moderate predictors are present in the data
- Bagging → most trees use the strong predictor at the top

- \bullet \rightarrow Most of them will be similar \rightarrow predictions will be correlated
- Averaging doesn't lead to a large reduction in variance

- RF overcome this by forcing each split to use a subset of predictors
- Majority of the splits do not consider the strong predictor
- → decorrelating the trees

- Bagging → multiple copies → trees are learned independently
- Boosting → Trees are grown sequentially
 - o each tree is grown using information from previously grown trees

- Does not involve bootstrap sampling
- instead each tree is fit on a modified version of the original data set

- Given the current model, we fit a decision tree to the residuals from the model.
- Fit a tree using the current residuals, rather than the outcome Y, as the response.

Boosting for Regression Trees

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree \hat{f}^b with d splits (d+1) terminal nodes) to the training data (X, r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$
 (8.10)

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i). \tag{8.11}$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$
 (8.12)

Rough

