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So far in FoML

e Intro to ML and Probability refresher
e MLE, MAP and fully Bayesian treatment

e Supervised learning

Linear Regression with basis functions
Bias-Variance Decomposition
Decision Theory - three broad classification strategies

Neural Networks

Q@ o O O

e Unsupervised learning
Q. K-Means, Hierarchical, and GMM for clustering
e Kernelizing linear Models

o. Dual representation, Kernel trick, SVM (max-margin classifier)

e J[ree-based Methods
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For today

e Model combination
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Single vs Multiple models

e Combining multiple models (often) — improved performance
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Single vs Multiple models

e Combining multiple models (often) — improved performance

o E.g, train L different models and use the average of the predictions made by

each model
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Single vs Multiple models

e Combining multiple models (often) — improved performance

o E.g, train L different models and use the average of the predictions made by

each model

e Such combinations of models - Committees
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Model combination - variants

e Boosting

o Training multiple models in sequence
o Error function used to train a models depends on the performance of the

previous model
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Model combination - variants

e Select one of the models to make the prediction

o Choice of the model is a function of the input

o Different models are responsible for making predictions in different regions
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Model combination - variants

e Select one of the models to make the prediction

o Choice of the model is a function of the input

o Different models are responsible for making predictions in different regions
e [.9, decision trees

o Selection process is a sequence of binary selections
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Bayesian Model Averaging vs.
Model combination
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Model combination

e [E.Q, density estimation using a mixture of Gaussians (GMM)

e Several Gaussian components are combined probabilistically

o Binary latent variable z is responsible for generating x
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Model combination

K
p(x,z) p(x) = p(x,2). p(x) = > N (x|, i)

k=1

p(X) = ﬁp(xn) — ﬂ [ZP(X” Zn)] - Each data Somple has a
’ corresponding latent variable

n=1 n=1 Zn
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Bayesian Model Averaging

e Several different models indexed by h and prior p(h)
o E.g, GMM or mixture of Cauchy distributions
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Bayesian Model Averaging

e Several different models indexed by h and prior p(h)
o E.g, GMM or mixture of Cauchy distributions

Marginal distribution over data  p(X) = Zp(XVL)p(h).
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Bayesian Model Averaging

e Several different models indexed by h and prior p(h)
o E.g, GMM or mixture of Cauchy distributions

H
Marginal distribution over data  p(X) = Zp(X|h)p(h).
h=1

One model is responsible for generating the whole data, p(h)
captures our uncertainty as to which model that is
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Decision Trees

e Suffer from high variance
o Different splits of training data — quite different results
e Random Forests, and Boosting reduce the variance

o These are general purpose procedures
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Bagging
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Bootstrap

e Creates multiple datasets sampled

Obs | X b 4
with replacement —
o
1 43 (24
e Used to quantify the uncertainty s 61
. . . . Obs |X Y Obe | & (¥
associated with a given estimator SRERIY
SN[ s 53 Jaa] — &
2 =z |o% 1143 |24
:
Original Data (Z) {
Obs [X |Y oup
o
2 2.1 |11
2 2.1 |11
1 43 |24
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Bootstrap

e Averaging a set of observations reduces the variance
e Take many training sets, train separate models and average the

resulting predictions
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Bagging

e Compute B different models using B separate training sets
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Bagging

e Useful for decision trees (improves predictions)

e B trees are trained on the bootstrapped datasets

o Trees are grown deep without pruning
o High varionce and low bias

o Aggregating — low variance
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Bagging

e Prediction aggregation

o Average for regression

o Majority voting for classification
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Raondom Forests
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Random Forests

e |Improvement over bagged trees

o Via decorrelating them
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Random Forests

e Similar to bagging, we build several trees

e When building trees

o During a split, a raondom subset of predictors are chosen as candidates
o Instead of all the ‘p’ predictors, only a random sample of ‘m’ (~/p) are allowed to

conduct split
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Random Forests

e Suppose one strong predictor and multiple moderate predictors
are present in the data

e Bagging — most trees use the strong predictor at the top
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Random Forests

e — Most of them will be similar — predictions will be correlated

e Averaging doesn't lead to a large reduction in variance
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Random Forests

e RF overcome this by forcing each split to use a subset of

predictors
e Majority of the splits do not consider the strong predictor

e — decorrelating the trees
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Boosting
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Boosting

e Bagging — multiple copies — trees are learned independently

e Boosting — Trees are grown sequentially

o each tree is grown using information from previously grown trees
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Boosting

e Does not involve bootstrap sampling
e instead each tree is fit on a modified version of the original data

set
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Boosting

e Given the current model, we fit a decision tree to the residuals

from the model.

e Fit atree using the current residuals, rather than the outcomey,

as the response.
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Boosting for Regression Trees

1. Set f(x) =0 and r; = y; for all i in the training set.
2. For b=1,2,..., B, repeat:

(a) Fit a tree f® with d splits (d + 1 terminal nodes) to the training
data (X, r).

(b) Update f by adding in a shrunken version of the new tree:
f(@) + f(2) + Af*(2). (8.10)
(¢) Update the residuals,
ri 1y — AfP(:). (8.11)

3. Output the boosted model.,

B
Fl@) =" Aft(). (8.12)
b=1
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Rough
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